3º) Comparando-se os resultados das tabelas verdades de P e Q, tem-se:

p ∧ q p ↔ q
V
V
F F
F F
F V

Conclusão:

Analisando as colunas dos resultados das tabelas verdades, na linha em que P obteve o resultado V, simultaneamente a proposição Q obteve também V, conforme requisito da regra de implicação. Logo, afirma-se que P: p ∧ q implica em Q: p ↔ q

Assim, diz-se:
P (p, q, r, ...) ⇒ Q (p, q, r, ...).

Ou simplesmente:
p∧q ⇒ p ↔ q

Uma forma de facilitar a comparação dos resultados é o uso compartilhado das colunas das proposições componentes. Veja a demonstração a seguir:

p q p ∧ q p ↔ q
Linha 1. V V V
V
Linha 2. V F F F
Linha 3. F V F F
Linha 4. F F F V
Copyright © 2016 AIEC.